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Baroclinic instability of three-layer flows 
Part 1. Linear stability 
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The stability of quasi-geostrophic thrce-layer stratified flow in a channel is examined. 
The mean zonal velocity Ui is uniform within each layer (i = 1 ,2 ,3 ) .  Thus, as in the 
two-layer model of Phillips (1954), the only source of energy for growing disturbances 
is the potential energy stored in the sloping interfaces. Attention is focused upon the 
case in which e = Ap2/Ap1 4 1 (Apl, ApZ are the changes in density across the upper 
and the lower interfaces). Two scales of instability are possible: long waves 
(wavenumber O(1)) associated with the upper interface and short waves (wave- 
number O(&))  associated with the lower interface. It is found that short waves are 
unstable only when 8 (the ratio of the slope of the lower interface to that of the upper 
interface) is greater than one or less than zero, i.e. when the gradients of potential 
vorticity in the two lower layers have opposite signs. The short waves have the 
largest growth rates when S2e (the ratio of the potential energy stored in the lower 
interface to that stored in the upper interface) 2 1 .  The results of this analysis are 
uscd in an accompanying paper to interpret some experiments with three-laycr 
eddies. 

1. Introduction 
Baroclinic instability, a process by which the potential energy of stratified, 

rotating flow is transferred to growing disturbances, has been the subject of much 
research since Eady (1949) demonstrated that the scales of motion associated with 
baroclinic waves are very similar to those observed in the weather of our atmosphere. 
Much progress in understanding the different aspects of the instability process has 
been made by the study, both experimentally and analytically, of layer models. 
Whilst retaining many features of interest, such models, with their simple vertical 
structure, are more amenable to theoretical investigations and are more easily 
studied in the laboratory than are continuously stratified flows. 

Most attention has been focused upon two-layer flows, from which it has been 
possible to gain much insight into baroclinic instability in more complex flows, for 
example, examining the effects of Ekman dissipation or small horizontal shear (see 
e.g. Pedlosky 1979). There are, however, some questions that cannot be answered by 
consideration of two-layer flows. Onc particular problem that will be addressed in 
this and an accompanying paper (Smeed 1988) is: how is the instability process 
modified by non-uniform vertical stratification ? 

Some aspects of this question may be investigated by using three-layer models 
such as that sketched in figure 1, in which the flow is composed of layers of depth 
H i  (i = f , 2 , 3 )  each of uniform density pz (p, < pz < p,) and mean zonal velocity q. 

Phillips (1954) invcstigatcd the linear stability of a similar quasi-geostrophic 
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FIGURE 1. Three-layer model. Each layer i (= 1,2 ,3)  is of depth H , ,  density pi and has mean 
zonal velocity U, parallel to the z-axis (out of page). 

two-layer stratified flow in a channel of width L, in which was uniform in each 
layer. Since there i s  no horizontal shear in this model, the only possible modes of 
instability are those that release the potential energy stored in the sloping interface. 
Unstable disturbances will grow if 

where f is the Coriolis parameter, and g’ = 2g(p2 - p l ) / ( p z  f p , )  is the reduced gravity. 
When 

the wavelength A, of the fastest growing mode is 

i.e. 27r times the Rossby radius. 
Theoretical studies of three-layer flows have been conducted by Davey (1977) and 

Ikeda (1983). Davey (1977) examined analytically the linear stability of flow in a 
channel in which the velocity Ui was uniform in each layer, H ,  = H ,  = H ,  and 
p3-p, = p2-p1. He found that curvature in the vertical profile of the horizontal 
velocity could change the range of unstable wavenumbers and the value of the 
wavenumber of maximum growth rate. These effects were (when the lower boundary 
was horizontal) parametrized by S = ( o3 - a2)/( D2 - ol). 

Ikeda (1983) considered the linear stability of a similar three-layer model, in which 
p2-p, > p3-pz ,  O2 = 0, = 0 and H ,  = H ,  = 2H,. When the lower boundary was 
horizontal, the effect of the lower interface upon the range of unstable wavenumbers 
was small, but when there was a bottom slope the presence of the lower interface 
allowed unstable modes not present in the equivalent two-layer flow (i.e. that in 
which p3 = p2).  Ikeda (1983) also investigated, numerically, the effects of horizontal 
shear and of a lateral boundary in the three-layer flow. 

Somewhat different studies of instability in three-layer flows have been reported 
by Holmboe (1968) and Wright (1980). Holmboe (1968) discussed the instability of 
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a vertically symmetric, continuously stratified flow. The stratification in each layer 
was linear but that in the central layer was different from that in the outer layers. 
Wright (1980) examined a similar problem in which the density had a linear profile 
in the middle layer, but was uniform in the upper and lower layers. 

In the following sections a linear stability analysis similar to those of Davey (1977) 
and Ikeda (1983), but for variable values of the velocity shears, density differences 
and layer depths, is discussed. Attention is focused upon the limit of e = Ap2/Ap1 4 1 
(Apl,Ap2 are the density differences across the upper and lower interfaces). The 
results of this study are used in an accompanying paper to interpret the results of 
some experiments with three-layer vortices. In the experiments the velocity is not 
uniform within each layer and the flow does not satisfy the conditions of quasi- 
geostrophy. However, the successful use by Griffiths & Linden (1981) of the results of 
Phillips ( 1954) in the interpretation of similar experiments with two-layer eddies 
suggested that the present theory could be used to interpret the experiments with 
three-layer stratification. The applicability of the theory to the experiments is 
discussed further in Part 2 (Smeed 1988). 

2. The model equations 
It is assumed that the flow is inviscid and satisfies the quasi-geostrophic equations 

of motion. The initial state is one of along-channel flow of ti, in layer i. The velocity 
of the disturbance is given by 

The variables are non-dimensionalized as follows 

(Z, g )  = L(x,  y ) ,  Di = u, ui, 

Ti = pLU, $i, t = 2 f -9 

where L is a horizontal lengthscale and U, is a typical value of the along-channel 
velocity. The reduced gravities a t  the upper and lower interfaces are g; and gi 
where 

Assuming that the amplitude y of the disturbance is small, the equations 
representing the conservation of potential vorticity in each layer may be linearized 
to obtain 

d 
- [VZ$l -F1($1 - $211 + 
dtl 

x FLM 194 
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where 

D. A .  Srneed 

d a  a 
dti at ax - =-+Ui- ( i =  1 , 2 , 3 ) ,  

Vl = 7J2-u,, v3 = u2-u3. 
The parameters 

are all Froude numbers. 
The first term in each of (3) represents the rate of change, following the basic flow, 

of the perturbation potential vorticity. The second represents the cross-channel 
advection of the potential vorticity of the basic state by the perturbation velocity. 

The boundary conditions on $i are that there can be no flow across the walls of the 
channel, i.e. 

(4) 
L 

ax L 3 = o on y = 0 , ~  (i = 1,2 ,3) ,  

where L, is the width of the channel. 

the horizontal plane and i t  is found that 
An energy equation can be obtained by integrating thc product of $i with (3) over 

Hi $ l /dxdy#7$i)2+FlHl at dx dy i ($1 - $J2+ F3 H ,  at dz dy $ ($3 - 
2=1 

The terms on the left-hand side of ( 5 )  represent the rate of change of the energy of 
the perturbations. This consists of the kinetic energy in each layer plus the potential 
energy associated with the upper and lower interfaces. The sources of energy for the 
growth of the disturbances are represented by the terms on the right-hand side of (5) ,  
they are the potential energy stored in the mean slopes of the upper and lower 
interfaces and the kinetic energy associated with the horizontal shear in each 
layer. 

As in the model of Phillips (1954), i t  is assumed here that the velocity U, is uniform 
in each layer so that the only disturbances that can grow are those that release 
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potential energy from the basic state. Once this assumption has been made, a 
solution to (3) can be found by letting 

q5i = q5$ sin ly eik(x-ct). 

To satisfy the boundary conditions (4) 
nnL 

I = -  (n= 1,2,3 ,... ). 
Lc 

Substitution of (6) into (3) yields a set of three linear algebraic equations for di: 
3 "  
S aiiq5i=0 ( j = 1 , 2 , 3 ) .  (7) 
i= l  

The coefficients aji are 

C' 
a2* = -- 

8 2  

1 
a31 = 0, a32 = -(c'-Se)- 

where the wave speed and wavenumber have been rescaled, 

C I  = -, c-u2 K2 =f+(kZ+12), ' H  

Vl 
so that both are O( 1) for disturbances associated with the upper interface. The total 
depth of fluid is H ,  S = -e-'V3/V1 is the ratio the slope of the lower interface to that 
of the upper interface and 

For a given wave vector (k,Z) the wave speed is obtained as the eigenvalue of 

laii[ = 0. 

This is a cubic equation for c', i.e. 

U C ' ~  +Pd2 + yc' + 6 = 0. 

The coefficients a, p, y and d are functions of K 2  1 
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The solutions to (9) may be either three real roots or one real root and a conjugate 
pair of complex roots. If the latter is true, then the flow will be unstable to small 
perturbations. The boundary between the stable and unstable modes is given by 

4y3a - y2P2 + 27S2a2 - 1 SolPyS + 48p3 = 0. (11) 

No simple expression for c' can be obtained from (9) and (10)  and so the solutions in 
the asymptotic limits of E -+ 0 and 8, + 0 will be discussed. 

Before discussing the particular cases two general remarks can be made. First, if 
either (or both) of V, and V, are non-zero there will always be a layer in which the 
sign of the gradient of potential vorticity will be opposite to that in one (in which case 
the gradient is zero in the third layer) or both of the other two layers. The necessary 
condition for instability is thus always satisfied. Secondly, from (9) and (10) it can 
be shown that for any given values of the parameters, all wavenumbers greater than 
some critical value are stable. 

3. Equal layer depths and equal density differences 
The case in which 8, = 8, = and E = 1 has been studied by Davey (1977).  In this 

example, the effect of curvature in the vertical velocity profile may be examined 
whilst keeping the stratification uniform. The results are illustrated in figure 2. 

The value of the largest unstable wavenumber K* has a minimum as a function of 
S when S = 1,  showing that curvature in the velocity profile increases the range of 
unstable wavenumbers. When S < 0 the values of K* are larger than when S > 0. In 
particular, as S t 0 there is a band of short, unstable waves. Davey (1977) noted that 
as K 2  + co the two interfaces become decoupled and the interface with the greater 
slope behaves somewhat like a rigid boundary, thus he was able to explain the 
behaviour as S t 0 by analogy with two-layer flow over a sloping bottom. In the two- 
layer problem, the bottom slope causes a large difference between the gradients of 
potential vorticity in the two layers for even a small vertical shear, and, when the 
interface slope is opposite to that of the bottom boundary, a small band of unstable 
wavenumbers is found with K 2  --f 00 as the shear tends to zero. 

. 

4. The limit of e 4 1 

In this section the special case in which the reduced gravity of the lower interface 
is much less than that of the upper interface, i.e. 8 4 1, is considered. By symmetry 
the results are equally applicable to the case c b 1. The layer depths are assumed to 
be of the same order, though not necessarily equal. 

There are two possible scales of instability in this problem. Associated with the 
upper interface there may be unstable waves with K = O(1) but shorter-scale 
disturbances (wavenumber O(E-+))  may grow because of the presence of the lower 
interface. 

Assuming that S-' = 0 ( 1 ) ,  the marginally stable wavenumber K* may be 
expanded as 

K*' = c - , X - , + X , + . . .  . (12) 

The coefficients X, may be determined by substituting (12) into (10)  and (11) and 
equating terms of the same order in E .  Consideration of the terms of lowest order 
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FIGURE 2. Range of unstable wavenumbers as a function of S-l, for the case of equal layer depths 
and equal reduced gravities ( E  = l , S l  = 8, = 5). The wavenumber of marginal stability when E = 
S = 0, K:,  is indicated on the K*-axis. The fastest growing mode is indicated (broken line) for the 
case of an infinitely wide channel (i.e. I = 0). 

and so it can be seen that O(e-i) wavenumber instabilities (i.e. X-, + 0) are possible 
only if 

This may be explained by noting that when K 2  $ 1 the upper interface acts 
somewhat like a rigid boundary and that (14) is the requirement that the gradients 
of potential vorticity in the lower two layers be of opposite sign. 

Further examination of (13) reveals that as S J 1 only a finite band of O(&) 
wavenumbers are unstable and that as X J 1 the width of this band +- 0. 

Thus it may be concluded that as SJ 1 there are two bands of unstable 
wavenumbers, the long waves ( K  = O(1)) and the short waves (K = O(E-4)). In 
between these there is a range of wavenumbers stabilized by the upper interface. 

S-1 < 1. (14) 

It can also be seen that as S-t 00, (13) implies 

4 
X Z , = - - ;  

82 83 

this is the same value as for the two-layer problem with layer depths H ,  and H 3 .  In 
this case the upper interface acts as a rigid boundary. 

These features can be seen in figure 3 in which K* is plotted as a function of S 
for 8, = 8, = i, E = 0.5, 0.2, 0.1 and 0.05. Also shown in figure 3 is K,,  the wave- 
number of maximum growth rate when 1 = 0 (i.e. in the limit of an infinitely wide 
channel). 

It can also be seen in figure 3 that although unstable waves with K 2  = O(E-') are 
possible for all S > 1, the growth rates of these disturbances only become equal to 
those of long waves for IS I significantly greater than 1. For the smaller values of 
E there is a discontinuity in the value of K ,  such that KL = O ( E )  for S > S,, and 
KL = O( 1) for S < S,. The value of S,  was calculated for the case in which the layers 
were all of equal depth (figure 4). In this case S,  - 0.8s-4 as c+O.  

To explain some of the features described above, it is helpful to consider the 
magnitude of the terms in the energy equation (5).  First consider Pl and P3, the terms 
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I I (4 - 2 - ' 1 1 '  1 '  1 '  1 "  ' I ' I '  

I (4 - 
I 

I 
I 

2 

I 
I 

- S' 

-2 

representing the release of potential energy from the mean slope of the upper and the 
lower interface respectively : 

' I 1  ' I ' I ' 1 ' I ' I ' 1 ' 

- 

I 

/ I  ' ' ' ' ' ' ' ' ' ' ' 1 

(16) 

where the overbar represents an average in x and t .  Substituting from (6) it is found 
that 

A "  A 

p3 = H 5 q  e2kv1cit 

where e; is the imaginary part of c' and Im (X) is the imaginary part of the complex 
variable X. From (7) and (8) 
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FIGURE 4. The value AS, of S (S > 0) at which the wavenumber of maximum growth rate changes 
from the long waves associated with the upper interface to the short waves associated with 
the lower interface as a function of E for the case 1 = 0,6, = 6, = 5. The straight line is given by 
ASc = o.8€-T. 

and so 

c; 
Similarly 

Im ($1) - -Se - (1 + c i 3  K2)P 

Note that (19) and (20) imply that PI and P3 always have the same sign (they are both 
positive when ci > 0). Therefore, it is not possible to have a mode of instability that 
transfers mean potential energy from one interface to mean potential energy of the 
other interface for any values of the parameters. The rates of production may though 
be quite different. 

Secondly consider the rates of change of potential energy of the perturbations a t  
the upper interface PE, and at the lower interface PE,. These are given by 

The magnitudes of the terms PJ&, PE,/Pl, PE3/P, and l($2-$3)/(q&-J2)l (the 
amplitude of the perturbations on the lower interface divided by the amplitude of 
the perturbations on the upper interface) were estimated in the limit of E - + O  for 
K 2  = O(1) and K2 = O(e-l) (table 1). To calculate these terms it is necessary to know 
the magnitude of c'. Examination of (9) in the limit of e + O  indicates that  for 
K 2  = O(e-l) imaginary values of c' (hence unstable modes) are only possible for 
c' = O(eS).  When K2 = O(1) growing disturbances have c' = O(1). In  the regime 
K 2  = 0(1), c' = O(1) the amplitude of the disturbance is of the same order on each 
interface and P3/Pl = S2e = the ratio of the available potential energy of the lower 
interface to that of the upper interface. When S is small (large) there is a net transfer 
from the upper (lower) to the lower (upper) interface. For disturbances with 
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K2 C' 

1 1 SZ.5 1 s-2 1 
€-I 8.5 c3 E-2 1 8-1 

TABLE 1 .  OrGers pf mFgni$des of the terms in the energy equation ( 5 )  in the limit of E + O  (S 
constant). l($3-$2)/($2-q5J is the ratio of the amplitude of the perturbations on the. lower 
interface to the amplitude of the perturbations on the upper interface. PI, P3, PE,  and P E ,  are 
defined in equations (16) and (21). 

K2 = O(e-l),c' = O(ES),  however, the amplitude of the disturbances on the upper 
interface is O ( E )  times that on the lower interface and most of the energy is released 
from the mean slope of the lower interface, a proportion O ( E )  of which is transferred 
to perturbations on the upper interface. 

The change in the value of the wavenumber of maximum growth from KL = 0(1) 
when S < S, to K t  = O(s-l)  for S > S,  where S, - c-4, may be understood by noting 
that the ratio of the growth rate kci for the long waves with K 2  = O( 1) and c' = O( 1) 
to that for the short waves, with K 2  = O ( E - ~ )  and c' = O(Ss) is l / S E i .  Thus the fastest 
growing waves are those associated with the interface with the greatest amount of 
available potential energy. 

5. A thin lower layer 
Another case of interest in which there are two possible scales of instability, is that 

in which the bottom layer is much shallower than the upper two (or equivalently the 
lower two layers are much deeper than the top layer). A stratification such as this 
could be used to model the bottom mixed layer of the benthic boundary layer below 
a deep stratified layer or the ocean thermocline above a deep stratified layer. 

It is assumed that gi and g; are of the same order, though not necessarily equal 
( E  - l),  and that S, < a,, 8,. In this case short waves associated with the lower 
interface may be expected to have K 2  = O(S; ) ,  and long waves associated with the 
top two layers will have K 2  = O(1). The range of unstable wavenumbers may be 
examined in a similar manner to that used in $4, i.e. by expanding K*2 as 

= qix-, +x, + . . . , (22) 

substituting (22) into (10) and ( l l ) ,  and equating terms of the same order in 8,. 
Inspection of the terms of lowest order in 8, show that X-, is given by 

4 x 2 ,  
62 

X - ,  = 0 or - 

It is thus apparent that  short waves are only possible for 8-l < 1. Equation (23) also 
indicates that as S J, 1, there is only a finite band of unstable wavenumbers with 
K 2  = O(6;;) and the width of this band + 0 as S J, 1 .  It may be concluded that as 
S j, 1 there are two bands of unstable wavenumbers, the long waves with K 2  = 0 ( 1 )  
and the shorter waves with K 2  = O(&$). In  between these there is a band of stable 
wavenumbers. 

These features are illustrated in figure 5, in which K* is plotted as a function of S 
for E = 1 ,  6, = S,, S,/S, = 0.5,  0.2, 0.1 and 0.05. There is a discontinuity in the 
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FIGURE 5. Range of unstable wavenumbers as a function of AS-', for the case c = 1, S, = 8, and ( a )  
8J6, = 0.5, ( b )  0.2, (c )  0.1, ( d )  0.05. The wavenumber of marginal stability when 6, = O,KZ, is 
indicated on the K*-axis. The fastest growing mode, K,, is indicated (broken line) for the case of 
an infinitely wide channel (i.e. 2 = 0) .  

wavenumber of maximum growth rate, however, the critical value 8, of S appears 
to decrease only slowly with 6, for the range of parameters in figure 5.  Examination 
of (9) in the limit of 8, + 0 indicates that growing disturbances with K 2  = O ( @ )  have 
c' = O(S4).  Thus the growth rates are O(S& indicating that S, - &$, which does in 
fact appear to be the case for 6, < 0.05 (figure 6). 

6. The stability of flows with continuous density profiles 
This study was intended primarily to model flows characterized by a strong 

pycnocline above a weakly stratified layer, the second interface being a crude 
representation of the stratification below the pycnocline. Warm ocean eddies such as 
Gulf Stream rings often have density profiles of this form and an example is discussed 
in Smeed (1988). The results are, though, also relevant to flows with more general 
density profiles. 

Flows with continuous density profiles (described by ( l / p g )  (ap/az) = N 2 ( z ) )  
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satisfying the quasi-geostrophic equations of motion may be considered as the sum 
of a set of orthogonal normal modes, so that the pressure is given by 

where Q1 satisfy 

I a 
ax - Q , = O  o n x = 0 , 1 ,  

(24) 

(see e.g. Flier1 1978). If this system is truncated to consider only the first N modes, 
a set of N equations is obtained for Ai ( j  = 0,1,  ..., N- 1). 

(26) 
a 
-(v&-Aj)A1+ c rijkJ[A$, (V&-dk)A,] = 0, 
at t ,  k 

where V& is the horizontal Laplacian, J is the Jaeobean operator, and 

Normal modes may also be defined for three-layer quasi-geostrophic flow. These 
modes satisfy 

I 1 
--(q;-q;)+A1q; = 0, 

8, 

I 1 1 
- cq; - qi” - - (4; - q;, + A, q; = 0, 
8 2  4 

I 
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where q; is the normalized amplitude of the j th  mode in layer i ,  so that the pressure 
in layer i is given by 

2 

pi = C a j ( ~ , y , t ) q ; .  (29) 
j = O  

Note that A, is non-dimensionalized by f 2 L 2 / g ; H .  The functions ui satisfy the same 
set of equations as the truncated set of modes A, but with rijk replaced by yUk and 
A, replaced by A,, where 

3 

If A, and yi jk  take the same values as Aj  and rajk then the layer flow models exactly 
the truncated set of modes of the continuously stratified flow. I n  the problem 
examined here, in which the mean flow varies only with z, the barotropic mode may 
be neglected. It is thus required to  set the values of A2/A, ,  y,,,, yl12, y122 and yZz2. 
However, there are only three variables, e, 6, and a,, that can be varied in the three- 
layer model. Thus, in general, it is not possible to represent exactly the truncated 
system (26). This problem has been highlighted by Flier1 (1978) who discussed in 
detail the calibration of two-layer models. The qualitative conclusions drawn from 
this study of three-layer flow do, though, give some insight into continuously 
stratified flows. 

The eigenvalues hi (which are the inverse squares of the deformation radii) 
satisfy) 

A, = 0, A, = + [ - b - ( b 2 - 4 ~ ) ; ] ,  A, = t [ - b + ( b 2 - 4 ~ ) i ] , )  

When e < 1 these are given approximately by 

The functions a, corresponding to the uniform mean flow considered here may be 
expressed as aj = ajo + Cij y and so the ratio of the slope of the lower interface to that 
of the upper interface is given by 

Expression (33) for S may be evaluated using (28). When E < 1 it can be shown 
that 

(34) 

6, = 0 =%. s = - 63 * O < S < l ,  

dl = 0 * f l =  -1 ) * s < - 1, 

1-6, 

€83 

and if dl and Ci, are both non-zero s = q  1 +? i, O(e-1) 1 
1-6, 

1 + 4 0 ( 1 )  
(35) 
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In the three-layer model wavenumbers O(e-i) were unstable only when 1x1 > 1, and. 
these modes had the largest growth rates when IS1 2 E-4. Equation (35) would then 
indicate that in a continuously stratified flow in which the deformation radius of the 
second baroclinic mode is ef times the deformation radius of the first baroclinic mode, 
short-scale disturbances are unstable if l&2/till k E .  For the short waves to be the 
fastest growing modes it is necessary for l&z/&l l  k 1.  

7. Summary 
The linear stability of quasi-geostrophic three-layer stratified flows in which the 

horizontal velocity is uniform in each layer has been examined. In  this model the 
only source of energy for growing disturbances is the potential energy stored in the 
sloping interfaces. Attention has been focused upon the limit of E = Apz/Ap, < I. In  
this limit two scales of unstable motions are possible: long waves with KZ = O(1) 
associated with the upper interface, and short waves ( K 2  = O(s- l ) )  associated with 
the lower interface. The stability of the flow was examined as a function of S ,  the 
ratio of the slope of the lower interface to the slope of the upper interface. The results 
in the limit of e + O  may be summarized as follows. 

0 < s < 1  

amplitude of perturbations is of the same order on the two interfaces. 
Only long-wave disturbances associated with the upper interface are unstable. The 

1 c IS1 < E-f 

Short waves associated with the lower interface are also unstable but the growth 
rates are small compared with the long waves. There is also an intermediate range 
of stable wavenumbers. The amplitude of short-wave disturbances is small ( O ( e ) )  on 
the upper interface. 

IS( > E-f 

The short waves have the largest growth rates. 

S-t-CO 

rates are small. The width of this band decreases as e + O .  
There is a band of short unstable wavenumbers K 2 +  00. However, the growth 

ST0 
There is a band of short unstable wavenumbers K 2 +  co. However, the growth 

rates are small. 
Examination of terms in the energy equation shows that all growing disturbances 

release energy from both interfaces. The rates of production, though, may be quite 
different and there may be a net transfer in the total potential energy. 

The limit of a thin lower layer below two deep layers has also been examined. 
Short-wave instabilities ( K 2  = O(6-4)) associated with the lower layer were found for 

The results of this analysis are used in an accompanying paper (Smeed 1988) to 
IS1 > 1. 

interpret the results of some experiments with three-layer eddies. 

I am very grateful to Dr Paul Linden for his guidance and encouragement during 
the course of this research. Financial support from the Natural Environment 



Baroclinic instability of three-layer jiows. Part I 231 

Research Council is gratefully acknowledged. Parts of this work were completed at  
the Institut de MBcanique de Grenoble, and I am grateful to the staff of the institute 
for their hospitality during my stay there. 

R E F E R E N C E S  

DAVEY, M. K. 

EADY, E. T. 1949 Long waves and cyclone waves. Tellus 1, 33-52. 
FLIERL, G. R. 1978 Models of vertical structure and the calibration of two-layer models. Dyn. 

Atmos. Oceans 2, 341-381. 
GRIFFITHS, R. W. & LINDEN, P. F. 1981 The stability of vortices in a rotating stratified fluid. 

J .  Fluid Mech. 105, 283-316. 
HOLMBOE, J. 1968 Instability of baroclinic 3-layer models of the atmosphere. Geofys. Publ. 28, 

IKEDA, M. 1983 Linear instability of a current flowing along a bottom slope using a three-layer 

PEDLOSKY, J. 1979 Geophysical Fluid Dynamics. Springer 624 pp. 
PHILLIPS, N. A. 1954 Energy transformation and meridional circulation associated with simple 

baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273-286. 
SMEED, D. A. 1988 Baroclinic instability of three-layer flows. Part 2. Experiments with eddies. 

J .  Fluid Mech. 194, 233-259. 
WRIGHT, D. G. 1980 On the stability of a fluid with specialised density stratification. Part I .  

Baroclinic instability and constant bottom slope. J .  Phys. Oceanogr. 10, 639-666. 

1977 Baroclinic instability in a fluid with three layers. J .  Atmos. Sci. 34, 
1224-1234. 

1-27. 

model. J .  Phys. Oceanogr. 13, 208-223. 


